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Common Discrete Random Variable  Distributions
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1 Sum of Poisson Variables

Assume that you were given two independent Poisson random variables X;,X,. Assume that the first has
mean A; and the second has mean A,. Prove that X; + X> is a Poisson random variable with mean A; + A,.

Hint: Recall the binomial theorem.
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2 Variance V~Poisso *

(a) Let X be arandom variable representing the outcome of the roll of one fair 6-sided die. What is Var (X)?
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(b) Let Z be a random variable representing the average of n rolls of a fair die 6-sided die. What is Var (Z)?

= 5K+t X)
VGP(ZS 4 :‘!T(Var(x,) t .. 4 Var(kn))

“h(E s 43
08
= 3

2n

CS 70, Spring 2022, DIS 11A

—_



3 Covariance

(a) We have a bag of 5 red and 5 blue balls. We take two balls uniformly at random from the bag without
replacement. Let X; and X, be indicator random variables for the events of the first and second ball
being red, respectively. What is cov(Xj,X>)? Recall that cov(X,Y) = E[XY] - E[X|E[Y].
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(b) Now, we have two bags A and B, with 5 red and 5 blue balls each. Draw a ball uniformly at random
from A, record its color, and then place it in B. Then draw a ball uniformly at random from B and record
its color. Let X| and X; be indicator random variables for the events of the first and second draws being

red, respectively. What is cov(Xy,X>)?
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